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Commutators in the Rubik’s Cube Group
Puzzle Enthusiast

Abstract. We show that every position of the Rubik’s Cube generated by an even number
of quarter turns can be solved by a single commutator. In other words, every element of the
commutator subgroup of the Rubik’s Cube group is itself a commutator. A generalization of
the main result to the n×n×n Rubik’s Cube is also sketched.

1. INTRODUCTION Both mathematicians [4, 6, 8] and cubers [3, 12] (Rubik’s
Cube enthusiasts) alike have puzzled over the following question:

“Given a finite group, is every element of its commutator subgroup equal to a commutator?”

In a group, a commutator is a product of the form [x, y] = xyx−1y−1. To a mathe-
matician, x and y are usually two elements of the group, but a cuber thinks of x and
y as sequences of face turns of the Rubik’s Cube. More formally, the face turns form
a generating set of the Rubik’s Cube group, and x and y are words on that set. Since
each solvable position, by definition, can be expressed as a sequence of turns, these
two notions are equivalent.

Commutators play perhaps an unexpected role in modern speedcubing, where cu-
bers attempt to solve the Rubik’s Cube as quickly as possible. They feature promi-
nently in both blindfolded and fewest moves solving, where they can be used to per-
mute a small subset of the pieces in only a few moves. In an arbitrary scrambled
position, how much can a single commutator fix? The commutator subgroup is the
subgroup generated by all of the commutators, and in the Rubik’s Cube group, this
subgroup consists of all positions which are solvable using an even number of quarter
turns. We show that each of these positions, and hence half of all solvable positions, is
equal to some commutator.

Our approach combines a known method of finding commutators in the symmet-
ric group with a partial characterization of the conjugacy classes of the Rubik’s Cube
group. Speedcubers might be disappointed to know that this solution is unlikely to
help with any human solving methods, falling under the aforementioned “mathemat-
ical” viewpoint of a commutator. Nevertheless, our results are expressed in the same
way as a cuber would: our commutators solve a particular position, that is, the com-
mutator is equal to the position’s inverse, and in our examples, we write out each term
of a commutator using sequences of turns. The optimal sequences found here were
discovered using Kociemba’s wonderful Cube Explorer program [7].

2. NOTATION AND TERMINOLOGY A permutation on a set X , whose elements
we call symbols, is a bijection P : X → X . A permutation P fixes a symbol x ∈ X if
P (x) = x. Otherwise, P moves x. An `-cycle is a permutation whose only nontrivial
cycle has length `. A transposition is a 2-cycle, i.e., a permutation that just swaps two
symbols. Every permutation on a finite set X can be decomposed into a product of
transpositions, and one way of defining the parity of a permutation is the parity of the
number of terms in that decomposition.

The group of all permutations on X , where multiplication is defined by function
composition, is known as the symmetric group on X , and Sn denotes the symmetric

January 2014] COMMUTATORS IN THE RUBIK’S CUBE GROUP 1



Mathematical Assoc. of America American Mathematical Monthly 121:1 April 11, 2022 8:49 a.m. paper-rubik.tex page 2

U

F
R

B

D

L

F U R
U U D
F R L

B D U
R F F
R F D

B
B
BL

R
UB

F
D

U U U
B B L
F D R

L L L
B D D
L L R

F R D
B L F
U R D

U
F R

L
U B

D
B R

U
R B

F
D R

U
L F

B
D L

F
L D

U
F

B
L

F
L

F
R

U
R

U
L

B
D

R
D

U
B

R
B

L
D

D
F

Figure 1. A solved cube, and a scrambled cube with its cycle decomposition.

group on a set of n symbols. The alternating groupAn is the subgroup ofSn consisting
of all the even permutations. The Rubik’s Cube is a classic real-life example of a group,
since every position can be thought of as a permutation on the stickers. In this paper,
group multiplication (especially in a sequence of turns) is read from left to right.

The Rubik’s Cube is a mechanical puzzle that appears to be built out of 27 smaller
pieces. Figure 1 shows the solved state as a partially unfolded net of a cube. The stan-
dard names of the faces are U(p), F(ront), R(ight), B(ack), L(eft), and D(own), and in
this paper, those faces have yellow, blue, red, green, purple, and white stickers, respec-
tively. Each face can be turned 90 degrees, rotating the 1×3×3 layer of pieces incident
with that face. If X is one of the faces, we use X, X2, and X’ to denote clockwise 90
degree, 180 degree, and counter-clockwise 90 degree turns, respectively. A position is
said to be even if it can be reached from the solved state in an even number of quarter
turns. Otherwise, the position is odd. Each quarter turn applies an odd permutation to
the stickers of the Rubik’s Cube, so the parity of a position is well-defined.

The hidden inner piece is the core that holds the mechanism together, and the center
pieces in the middle of each face can only rotate in place. The remaining corner and
edge pieces can be shuffled around the puzzle, forming two orbits of pieces and stick-
ers. Until Section 9, when we talk about “pieces,” we mean just the corners and edges.
Those pieces are given names that list out its incident faces, in counter-clockwise or-
der. The letter that comes first often indicates the orientation of the piece, i.e., which
sticker is “facing up.”

Recall that a permutation can be described by its cycle decomposition, and the cy-
cle type of a permutation is the sequence of cycle lengths, sorted in decreasing order.
Though the stickers of the Rubik’s Cube are the symbols being permuted, a cycle
decomposition of stickers is cumbersome to parse because it contains redundant in-
formation. For example, the destination of one corner sticker determines those of the
other two stickers on that piece. A more compact representation is due to Singmaster
[11], which tracks permutations of pieces and their orientations. We illustrate this no-
tation on the scrambled position in Figure 1, which can be generated from the solved
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state by the sequence:

B2 F’ U’ F R’ U F2 D2 R’ B2 R’ D R2 B2 U’ B’ D2.

Consider the UFR corner piece in the scrambled position. It has been sent to LUB,
where the U sticker of UFR has been mapped to the L sticker of LUB. Moving along
the cycle, we see that LUB is sent to DBR, and finally, DBR is sent back to FRU. One
could say that this cycle has “torsion” because one loop around the cycle leaves us in
a different orientation from that in which we started. We write this cycle as

(UFR LUB DBR)+,

where the + subscript indicates that the cycle returns to the first piece with its sec-
ond sticker “facing up.” Likewise, the other cycle of corners can be written with a −
subscript, as in

(URB FDR ULF BDL FLD)−,

because the cycle returned to the third sticker of the first piece. A similar ornamentation
is given to edge cycles: if such a cycle returns to the other sticker of the first piece, it is
given a + subscript. Finally, when a corner or edge cycle returns to the same sticker,
no subscript is recorded. Following these definitions and the visual depiction of the
cycle decomposition at the bottom of Figure 1, the cycle decomposition of the edges
reads:

(UF) (BL)+ (FL FR)+ (UR UL BD RD UB RB LD DF).

The subscript attached to each cycle is what we call the twist type of the cycle, and
later we prove a constraint on possible collections of twist types. The “oriented” cycle
type of a Rubik’s Cube position replaces each cycle with its length while preserving
the subscript. Our example has the cycle type (5−, 3+) for corners, and (8, 2+, 1+, 1)
for edges.

Given any position, its inverse has the same cycle type, except each corner cycle of
twist type + now has twist type −, and vice versa. One can think of the twist types of
the corners and edges as isomorphic to the integers modulo 3 and 2, respectively.

3. INVARIANTS OF THE RUBIK’S CUBE Disassembling and reassembling a
Rubik’s Cube may result in a position which is not solvable, and thus not all cycle
types are realizable by a solvable position. We briefly review how piece orientations
can be defined and how they are used to formulate the solvability criteria. The discov-
ery of these invariants is attributed to Anne Scott (see [11, p.13]).

The cubicle of a piece is its starting location in the solved state, and a piece can
be in different orientations in the same cubicle. When a piece is in its cubicle, it is
straightforward to define the orientation of the piece as the amount one needs to rotate
the piece in place until it becomes solved. But how do we describe the orientation of
a piece away from its cubicle? The standard approach is to define a frame of reference
by designating, for each corner and edge piece, a chief sticker. Then, if piece P is in
the cubicle of piece Q, then we can describe the orientation of P based on the relative
orientation of their chief stickers. If P is a corner, then we use + (resp. −) to indicate
that the chief sticker of P is twisted 120 degrees counterclockwise (resp. clockwise)
from that of Q. Misoriented edges are denoted by a +.
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Figure 2. The chief stickers of the canonical frame, and their locations in the example scramble.

The forthcoming results apply for any choice of chief stickers, but later on, it will
be helpful to fix one specific frame of reference. The simplest choice is what we call
the canonical frame shown in Figure 2(a): for each piece, select the U or D sticker,
or if the piece does not have such a sticker (in the case of the four “equatorial” edge
pieces), the F or B sticker. Figure 2(b) illustrates how the chief stickers determine the
orientations of pieces, with respect to this canonical frame, in the example scramble.

Since rotating a piece in place cycles through its different orientations, the group
of a specific corner or edge’s orientations is isomorphic to the integers modulo 3 or 2,
respectively. Not all combinations of corner and edge orientations are viable:

Proposition 3.1 (corner orientation invariant). In a solvable position, the sum of the
corner twists is 0 (mod 3) with respect to any frame of reference.

Proposition 3.2 (edge orientation invariant). In a solvable position, the sum of the
edge flips is 0 (mod 2) with respect to any frame of reference.

The overloading of the + and− notation for both piece orientations and cycle twist
types is not coincidental, though we note that, unlike individual piece orientations,
twist types are independent of the frame of reference. Understanding our construction
is aided by extending the above two invariants to twist types:

Lemma 3.3. The sums of twist types of corner and edge cycles are 0 (mod 3) and
0 (mod 2), respectively.

Proof. We may choose a frame of reference so that all but possibly one piece per
cycle is correctly oriented. That last piece’s orientation matches the twist type of the
cycle.

In several places, our construction rotates pieces in place, and we note that doing so
can only affect twist types, and not the cycle lengths. The above Lemma can save us
the effort of calculating those changes, since we can infer the twist type of one cycle
by looking at the twist types of all the other cycles. Another related consequence is
that solvability can be checked just by looking at the cycle type.

If we ignore the orientations of all the pieces, then a quarter turn of any face applies
a 4-cycle on both the corners and edges. Since the solved position consists of two even
identity permutations, our final invariant thus reads as follows:

Proposition 3.4 (total permutation invariant). In a solvable position, the corner and
edge permutations have the same parity.
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Figure 3. Some well-known commutators that solve the pictured positions.

Any position that violates any one of these invariants is surely unsolvable, but an
oft-overlooked step is showing the converse. We first reduce the problem to solving
even positions by making any quarter turn on any odd position. Next, we introduce
the four commutators in Figure 3 that cycle three corners, cycle three edges, twist two
corners, and flip two edges, respectively.

Remark. The first of these commutators belongs to a family of 8-move commutators
that permute three corners. Their short lengths make them particularly useful in fewest
moves solving, where a cuber works on one scrambled position in a prescribed time
limit. A common strategy is to reach a partial solution where only three corners are in-
correct. Then, one tries to solve those corners by inserting a commutator in the middle
of their partial solution, hoping to cancel out turns in the process.

There is enough wiggle room to permute any three or orient any two pieces using
a conjugate of one of these commutators. More concretely, this process involves plac-
ing the target pieces in the positions of the affected pieces in Figure 3, applying the
commutator, and then carefully undoing those “setup moves.” For example, twisting
the corners DRF and ULF can be accomplished via the conjugation

R2 F [R’ D R F D F’, U] F’ R2,

since R2 F sends DRF to URB and ULF to RUF. Surprisingly, this is already a com-
plete method for solving the Rubik’s Cube: make a quarter turn if the position is odd,
place the pieces in their cubicles, and finally, fix their orientations if necessary. If the
total permutation invariant is satisfied, then the corner and edge permutations can both
be decomposed into products of 3-cycles. The latter two commutators can be used
to correct the orientations of all but one corner and one edge. In positions where the
corner and edge orientation invariants are satisfied, the remaining two pieces must be
correctly oriented, as well. Since conjugates of commutators are themselves commu-
tators (a[b, c]a−1 = [aba−1, aca−1]), we obtain the easier half of our main result:
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Proposition 3.5. The commutator subgroup of the Rubik’s Cube group consists of all
even solvable positions.

Remark. This approach is not too far from actual blindfolded methods for solving the
Rubik’s Cube. A speedcuber would essentially memorize the cycle decomposition of
the inverse position and use a larger set of commutators to permute and orient pieces
simultaneously. Fixing the parity in odd positions is actually done at the end of the
solution using a sequence that permutes two corners and two edges. One does not
know, a priori, the parity of the position, and trying to work out how a quarter turn
affects the cycle decomposition would be too time-consuming.

4. CONJUGACY IN THE RUBIK’S CUBE GROUP Two group elements g and h
are conjugate if there is some element x such that h = xgx−1. We call x the conjuga-
tor from g to h. Conjugacy is an equivalence relation, partitioning the group elements
into conjugacy classes. One approach for representing an arbitrary group element as a
commutator is to first factor it into a product gh, where g−1 and h are conjugate. If x
is a conjugator from g−1 to h, then [g, x] is the desired commutator. For this reason,
we sometimes refer to the second term of a commutator as a conjugator as well.

In the symmetric group, two permutations are conjugate if and only if they have
the same cycle type. A conjugator can be constructed by bijectively mapping each
cycle from one permutation to a cycle of the same length in the other permutation.
In the alternating group An, having the same cycle type is no longer sufficient. For
example, the 5-cycles (1 2 3 4 5) and (1 2 3 5 4) are conjugate in S5, but all possible
conjugators have odd parity. Hence, they belong to different conjugacy classes of A5.

The cycle-matching procedure can also be applied to Rubik’s Cube positions, where
the cycles must agree in both length and twist type. Just like in the alternating group,
the resulting conjugator might not be solvable. Singmaster [11, p.58] describes a pair
of positions whose conjugators all violate the total permutation invariant. Here, the
role of the symmetric group (i.e., the group to which the conjugators belong) is played
by the constructible group, the supergroup consisting of all ways of disassembling
and reassembling the puzzle without peeling off any stickers. In some cases, we can
modify an unsolvable conjugator into a solvable one:

Proposition 4.1. Suppose that y is a conjugator from x to w, and let z be an element
that commutes with x. Then, yz is also a conjugator from x to w.

Proof. (yz)x(yz)−1 = yzxz−1y−1 = y(zz−1)xy−1 = yxy−1 = w.

Corollary 4.2. Let [x, y] be a commutator, and let z be an element that commutes with
x. Then, [x, y] = [x, yz].

In contrast to 5-cycles, 3-cycles are always conjugate to one another in A5: if the
conjugator y has odd parity, choose z to be the transposition that swaps the two fixed
symbols in x. Now, yz has even parity. In general, if the modifying element z is outside
of the subgroup, then y and yz belong to different cosets. Our method makes use of
positions belonging to one of two cycle types. In both cycle types, we show that all
positions are conjugate to one another by finding appropriate positions z that correct
violations of the three solvability invariants.

5. BERTRAM’S THEOREM As one of several methods for constructing commu-
tators in the symmetric group, Bertram [1] described when an even permutation can be
expressed as a product of two `-cycles. We define the support supp(P ) of P to be the
set of symbols it moves, and we say that two permutations P and Q overlap if some
symbol is moved by both permutations, i.e., supp(P ) ∩ supp(Q) 6= ∅.
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Theorem 5.1 (Bertram [1]). LetP be an even permutation on n symbols, and suppose
that P moves m := | supp(P )| symbols and has c nontrivial cycles. Then, P can be
expressed as a product of two overlapping `-cycles, for any (m+ c)/2 ≤ ` ≤ n.

We can maximize m+ c by trying to pack as many transpositions into the permu-
tation as possible, which results in a bound independent of the permutation itself:

Corollary 5.2 (Bertram [1]). Every even permutation on n symbols can be written as
a product of two `-cycles, where ` ≥ b3n/4c.

Short proofs of Theorem 5.1 can be found in Herzog et al. [5] and Appendix A. A
common feature of these proofs is that the case where ` = (m+ c)/2 is solved first,
and then additional symbols are incorporated into the cycles. Achieving this second
step can be boiled down into two simple statements about multiplying by transposi-
tions:

Fact 1. Suppose a permutation has two different cycles of the form (s . . . ) and
(t . . . ). Left- or right-multiplying the permutation by the transposition (s t) merges
the two cycles together.

Fact 2. Given two permutations A and B, right-multiplying A and left-multiplying B
by the same order 2 permutation T (such as a transposition) preserves their product,
i.e., AB = (AT )(TB).

Bertram and Herzog [2] essentially proved the following result, which can be ap-
plied repeatedly to achieve all the remaining cases of Bertram’s theorem:

Lemma 5.3. Let A and B be two overlapping `-cycles in the symmetric group Sn,
where 1 < ` < n, and let s be a symbol fixed by at least one of A or B. Then, there are
two overlapping (`+ 1)-cycles A′ and B′ that both move s satisfying AB = A′B′.

Proof. If s is fixed by both A and B, then let t be a symbol moved by both A and
B. Then let A′ = AT and B′ = TB, where T is the transposition (s t). Otherwise,
assume without loss of generality that s is fixed by A, but not by B. Since A and B
are cycles of the same length, by the pigeonhole principle, there must be some symbol
u which is fixed by B, but not by A. Just like in the first case, we can multiply A and
B by the transposition (s u). In both cases, the `-cycles of A and B are being merged
with trivial cycles of length 1 to make two (`+ 1)-cycles.

Figure 4 illustrates both modifications, where the vertices are the symbols and the
directed edges are the mappings.

Our method for solving the corners only requires the special case of Bertram’s the-
orem where the cycles permute all of the symbols, i.e., when ` = n. The purpose of
describing his result in full detail is to extract out the following technical result used
for solving the edges:

Lemma 5.4. Let P ∈ S12 be an even permutation, and let s be a symbol fixed by P .
Then, P can be written as a product of two 10-cycles A and B, where s is moved by
both A and B.

Proof. By Corollary 5.2, P can be expressed as a product of two 9-cycles A and B.
Applying Lemma 5.3 on the symbol s results in two 10-cycles.

Our application of Bertram’s theorem to the Rubik’s Cube results in factorizations
involving positions we call pure permutations and pure orientations. A position is said
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Figure 4. Incorporating new symbols into cycles without affecting the product.

to be a pure permutation if every piece is correctly oriented with respect to the canoni-
cal frame. If every piece is in its correct cubicle, but in possibly incorrect orientations,
then it is a pure orientation.

If the orientations of the pieces are ignored, the constructible group collapses into
the direct product S8 × S12. To streamline the notation, the symbol we choose for each
piece starts with its chief sticker in the canonical frame, e.g., ULF or BR. For even,
solvable positions, each component of its corresponding element in S8 × S12 is even.
Thus, Bertram’s theorem can be applied to each component separately. In the reverse
direction, every element in S8 × S12 can be interpreted as a pure permutation.

When we say that we apply Bertram’s theorem to a positionP , we mean we “forget”
the piece orientations, apply Bertram’s theorem to each piece type, and finally “mis-
remember” the orientations of the pieces to get two pure permutations PA and PB .
Since this process loses all information on piece orientations, this factorization results
in yet another position PO, a pure orientation satisfying P = PAPBPO. Our method
for constructing commutators attempts to find a conjugator from P−1A to PBPO. These
two positions may not have the same cycle type (some cycles may have non-matching
twist types), so some pieces may need to be reoriented.

6. CORNERS We solve the corners separately from the edges, and it helps to com-
pletely ignore the edges by peeling off all of those stickers. Solvability on the resulting
“corners-only” cube is governed by only the corner orientation invariant. The notions
of odd and even positions, pure permutations and orientations, and the constructible
group carry over into this subgroup.

Consider the “supertwist” position T on the left part of Figure 5. It is a pure orien-
tation, and since all of the eight corners are twisted in the same direction, this position
is unsolvable. It also satisfies another key property:

Proposition 6.1. The supertwist position commutes with every element in the corners-
only cube.

Proof. If P is some arbitrary constructible position, we want to show that P =
TPT−1 by checking the image of each corner piece. Suppose P maps the corner
piece ABC to XYZ. By focusing on a different orientation of the two pieces, an equiv-
alent way of describing this map is to say that BCA is sent to YZX. Thus, TPT−1

sends ABC 7→ BCA 7→ YZX 7→ XYZ as well.

In other words, the supertwist is in the center of the group. The supertwist con-
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Figure 5. The unsolvable supertwist, and the solvable superflip.

stitutes a universal fix for trying to find a solvable conjugator between corners-only
positions:

Lemma 6.2. Every even, solvable position in the corners-only cube can be solved by
a commutator [C1, C2], where C1 and C2 are solvable, and C1 is an odd position.

Proof. Applying Bertram’s theorem to an even solvable position C∗ results in a factor-
ization C∗ = CACBCO, where CA and CB are two pure permutations of cycle type
(8), and CO is a pure orientation. Cycle types of (8+) and (8−) are impossible due to
Lemma 3.3, so both C−1A and CBCO must also have cycle type (8).

Let CX be any (constructible) conjugator from C−1A to CBCO. Then, by Corollary
4.2, C∗ can be written as commutators of the form

[CA, CX ] = [CA, CXT
k],

where k is any integer and T is the supertwist. Since T violates the corner orientation
invariant, exactly one of CX , CXT , and CXT

2 is solvable.

In our example scramble, the inverse permutation, after ignoring orientations, has
the cycle decomposition

(UFR DBR UBL)(URB DFL DLB ULF DRF),

which can be factored into a product of two 8-cycles AB, where

A = (UFR UBL DFL URB DLB DRF ULF DBR)

B = (UFR UBL DBR DRF ULF URB DLB DFL).

Interpreting these two 8-cycles as positions, the “oriented” cycle decomposition of CA

reads the same as the cycle decomposition of A, but CBCO has some corners twisted:

CBCO = (UFR LUB BRD DRF LFU BUR DLB LDF).

The conjugator from C−1A to CBCO where UFR is mapped to itself happens to be
unsolvable, but if we compose it with the supertwist, then we obtain the solvable con-
jugator

CX = (UFR)+(URB)−(ULF DLB FLD UBL RDB)−(DRF)+

shown in Figure 6.
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7. EDGES Starting with a brand new Rubik’s Cube, we now peel off the corner stick-
ers to get the “edges-only” cube. The analogue of the supertwist is known as the su-
perflip, shown on the right of Figure 5. The unsolvability of the supertwist was crucial
in the corners’ solution, but unfortunately, the superflip has an even number of mis-
oriented edges, making it solvable. One can use this fact to show that the edges-only
positions of cycle type (12) are divided into two conjugacy classes, hence we cannot
reuse our earlier method here. To remedy this, we will have to turn to positions of other
cycle types. These positions are trickier to work with.

An edge is said to be flipped in place if it is in its correct cubicle, but in the wrong
orientation. If Z is a subset of the edges, let FZ denote the pure orientation where an
edge is flipped in place if and only if it is in Z. The solvability of FZ depends on the
parity of |Z|, and when Z is nonempty, FZ has order 2. For example, the superflip
is the position where Z is the set of all edges. We first describe a simple sufficient
condition for conjugacy in the edges-only cube:

Proposition 7.1. Suppose two positions have the same cycle type and that the cycle
type contains a “1”, i.e., there is a solved edge. Then, the two positions are conjugate.

Proof. Suppose that the edge XX is solved in the first position, and consider any con-
jugator from the first position to the second position. If the conjugator is not solvable,
then by Proposition 4.1, multiplying it by FXX (which also violates the edge orientation
invariant) yields a solvable conjugator.

The perturbation FXX resembles the one used in our earlier mention of 3-cycles in
A5: it is a transposition of two fixed stickers.

Bertram’s theorem can be used to factor any even permutation on 12 symbols into
a product of two 10-cycles, but now the positions P−1A and PBPO can have one of
three different cycle types. We show that, in all cases, we can match up the cycle types
by inserting an appropriate pure orientation FZ . Our construction splits into two cases
depending on the number of edges flipped in place:

Proposition 7.2. Every even, solvable position in the edges-only cube with at least
two edges flipped in place can be expressed as a product of two positions of cycle type
(10+, 1+, 1).

Proof. Pick any two edges XX and YY that are flipped in place, and apply Bertram’s
theorem restricted to the remaining ten edge pieces to obtain a factorization EAEBEO,
where EA and EB are two pure permutations of cycle type (10, 1, 1), and EO is a
pure orientation. Since both EA and EB fix XX and YY, EO must flip those two
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edges. Thus, EBEO has cycle type (10, 1+, 1+). Let ZZ be any other edge, and form
the pure orientation FXX,ZZ. Since ZZ is part of the 10-cycle of both EA and EB ,
the compositions EAFXX,ZZ and FXX,ZZEBEO are the desired positions of cycle type
(10+, 1+, 1). In the former, XX becomes flipped in place, and in the latter, YY remains
flipped in place.

An example of such a position is the superflip. Since all edges are in their cubicles,
the product of 10-cycles resulting from Bertram’s theorem can be any 10-cycle and its
inverse. Tracing through the steps above, with XX = UF, YY = UR, and ZZ = UB,
yields the positions

EAFUF,UB = (UB UL FR FL BR BL DF DR DB DL)+(UF)+(UR)

FUF,UBEBEO = (UB DL BD DR FD BL RB FL RF UL)+(UR)+(UF).

Proposition 7.3. Every even, solvable position in the edges-only cube with at most
one edge flipped in place can be expressed as a product of two positions of cycle type
(10, 1, 1).

Proof. By Lemma 5.4, the inverse position has the factorization EAEBEO, where EA

and EB are pure permutations of cycle type (10, 1, 1), and the edge flipped in place
(if present) is part of the 10-cycle in both EA and EB .

In the position EBEO, there may be edges which are flipped in place. Any such
edge XX must be part of the 10-cycle of EA, since otherwise, that edge would be
flipped in place in the original position, unmoved by both cycles. Pick any edge ZZ be-
longing to both 10-cycles. We insert two copies of FXX,ZZ in between EA and EBEO.
InEA, both of those edges belong to the 10-cycle, soEAFXX,ZZ has the same cycle type
(10, 1, 1). In FXX,ZZEBEO, the twist types of the 10-cycle and the 1-cycle correspond-
ing to XX flip. If EBEO has another edge YY flipped in place, we can repeat the same
procedure, multiplying both terms by FYY,ZZ. After these adjustments, both EAFZ and
FZEBEO, for some appropriate set of edges Z, have cycle type (10, 1, 1).

In our running example, there is one flipped edge BL. Applying Bertram’s theorem
to the inverse position, making sure that both 10-cycles move BL, produces the pair of
permutations

A = (UF FL FR BL BR DF UB UL DR DB)(UR)(DL)

B = (UF UL DR UR DF UB DL BR BL FL)(DB)(FR)

One can check that in the resulting position EBEO, the edge FR is flipped in place.
We can fix this by multiplying both positions by FFR,UB. The resulting cycle decom-
positions are

EAFFR,UB = (UF FL RF LB RB FD UB UL DR DB)(UR)(DL)

FFR,UBEBEO = (UF LU DR UR DF BU LD RB BL FL)(DB)(FR)

The two previous constructions cover all possible cases, and since both cycle types
contain a solved edge, Proposition 7.1 shows that both factorizations can be expressed
as commutators with solvable conjugators:

Lemma 7.4. Every even, solvable position in the edges-only cube can be solved by a
commutator [E1, E2], where E1 is an odd position.
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Figure 7. A commutator solving the example scramble.

One possible conjugator from (EAFFR,UB)
−1 to (FFR,UBEBEO) is

EX = (UR RD DB)(UF LF RF LD DF LU)+(BR)+(BL)(UB).

8. TOTAL PERMUTATION Solvable positions in the corners-only and edges-only
cubes can be combined into a solvable position of the original Rubik’s Cube if and
only if the total permutation invariant is satisfied. The choice to factor both the corners
and edges as a product of two odd permutations serves two purposes: the first term
of the combined commutator automatically satisfies the invariant, and the second term
can be easily corrected if it does not:

Theorem 8.1. Every even position of the Rubik’s Cube can be solved by a commutator.

Proof. From Lemmas 6.2 and 7.4, the corners and edges can be solved separately by
two commutators [C1, C2] and [E1, E2], where both C1 and E1 are odd positions. If
C2 and E2 differ in parity, then by Corollary 4.2, we may replace E2 with E2E1, since
E1 is odd and trivially commutes with itself. Now, C2 and E2 have the same parity
and can be combined into two positions that satisfy all three invariants.

The conjugators we found earlier, CX and EX , have different parities. We replace
EX with

EXEA = (UF FR DL UB UL FL BL BR FD DR)+(UR BD)+,

and now both conjugators are even. Let PA be the combination of CA and EA, and
PX be the combination of CX and EXEA. The final commutator [PA, PX ] is shown
in Figure 7, where PA and PX can be generated by the following sequences:

PA = B2 D F2 U R2 U R’ U L U’ F U F’ R’ F2 U L

PX = L B’ D’ B2 L’ B2 F’ L D’ F D2 R B’ R’ F2 L F U’

9. THE n×n×n RUBIK’S CUBE Higher-order cubes introduce new piece types
that generalize those of the original 3×3×3 Rubik’s Cube. Figure 8(a) depicts the
different piece types of the 7×7×7 cube (with nonstandard names). What we have la-
beled Ce, M, and Co in the figure can be thought of as a 3×3×3 cube embedded in the
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Figure 8. Piece types (a) and the three classes of moves (b) in the 7×7×7 cube.

bigger cube, so our earlier method can be used to solve these piece types. The remain-
ing pieces actually have a much simpler solution due to the lack of piece orientations—
even the generalized edge piece types W2 and W3, which have two stickers per piece,
cannot be flipped in place. Thus, each new piece type looks like a symmetric group
S24, subject to some new total permutation constraints.

Figure 8(b) shows the different kinds of turns with the U axis as an example. X
and mX turns, for m ≥ 2, X ∈ {U,F,R,B, L,D}, are often referred to as face turns
and slice turns, respectively. Each set of turns at a particular “depth” induces its own
total permutation invariant. For example, face turns on the 7×7×7 apply a 4-cycle to
each generalized center piece (besides Ce), M, and Co, but apply two 4-cycles to each
generalized edge piece (besides M).

Consider any position that can be reached from the solved state using an even num-
ber of mX slice turns, for each m. In such positions, the parity of any generalized
center piece (besides Ce) matches that of the embedded 3×3×3, and the parity of
any generalized edge piece (besides M, when n is odd) is always even. After finding a
solution to the embedded 3×3×3, we may solve all the remaining piece types one by
one, accomodating any total permutation requirements with a unified approach:

Lemma 9.1. Every even permutation of S24 can be expressed as a commutator [X,Y ],
for any choice of parities for X and Y .

Proof. By Bertram’s theorem, every even permutation of S24 can be written as a prod-
uct AB, where A and B are either two 21-cycles, or two 22-cycles. Then, AB =
[A, Y ], where Y is any conjugator from A−1 to B. If Y does not have the desired
parity, then consider any two symbols a1 and a2 fixed by A. By Corollary 4.2, right-
multiplying Y with the transposition (a1 a2) yields a conjugator of the opposite par-
ity.

There are some minor technicalities when working with larger order cubes regard-
ing the ambiguity of the solved state: center stickers in the usual n×n×n cube are
indistinguishable, and when n is even, the standard set of moves can be combined to
rotate the entire cube (e.g. U 2U 2D’ D’ on the 4×4×4). Fixing one of those solved
states as the identity permutation resolves these issues, and hence the positions of the
n×n×n cube describe a group. The commutator subgroup once again consists of the
positions where the parity of each piece type is even.

Theorem 9.2. Every element of the commutator subgroup of the n×n×n cube group
can be solved by a commutator.
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10. CONCLUSION Our method produces a single commutator for each even posi-
tion of the Rubik’s Cube, but a few questions remain about the variety of such com-
mutators. For the 3×3×3 cube, our commutators correspond to one of two conjugacy
classes. With a little extra work, Proposition 7.3 can be extended to show that only cy-
cle type (10+, 1+, 1) is needed. Which other cycle types are sufficient by themselves?
Cycle type (12), the one we had to avoid earlier, is particularly tantalizing: it would be
more aesthetically pleasing to have a solution that mirrors that of the corners. Perhaps
one can guarantee conjugacy using more deliberate choices of 12-cycles, rather than
ones arbitrarily generated by Bertram’s theorem.

The commutators in Figure 3 have intuitive explanations and use only a few moves,
but on the other hand, our commutators are complicated and often long. Rokicki, Ko-
ciemba, Davidson, and Dethridge [10] showed that the diameter of the Rubik’s Cube
group is 20 [10], so each of our commutators uses at most 80 turns. Is there any way
to guarantee fewer turns? Answering this will almost certainly require computational
techniques, since positions belonging to the same conjugacy class can have different
distances to the solved state.

The commutator problem for other twisty puzzles is open. The Megaminx puzzle
is the dodecahedral analogue of the Rubik’s Cube, and since each face is pentagonal,
every solvable position has an even permutation applied to its corner and edges. Thus,
the Megaminx group can be shown to be equal to its commutator subgroup. We expect
that any solution to the commutator problem for this puzzle will be significantly more
complicated than our solution for cubic puzzles due to this parity restriction.
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A. ANOTHER PROOF OF BERTRAM’S THEOREM

Proof of Theorem 5.1. By Lemma 5.3, it suffices to show that P can be expressed as
a product of overlapping `0-cycles, where `0 := (m+ c)/2.

We start by writing P as a product of two conjugate permutations by handling
cycles one or two at a time, decomposing them as products of cycles on the same

14 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 April 11, 2022 8:49 a.m. paper-rubik.tex page 15

t1
ti+1

t2i+1

AB
t2i+1

P

t1

uj

vk+1

u2j v2k

u1 v1

A

B

(a)

p

q

p

q

(b)

Figure 9. Splitting one odd cycle and two even cycles into products of two cycles (a), and joining pairs of
disjoint cycles (b).

symbols. This method was first seen in Ore [9], but our choices of cycles are slightly
more unified. Following Figure 9(a), each nontrivial odd cycle (t1 t2 . . . t2i+1) in P
can be written as a product of two (i+ 1)-cycles

(t1 t2 . . . ti+1)(t1 ti+2 ti+3 . . . t2i+1),

and each pair of even cycles (u1 u2 . . . u2j)(v1 v2 . . . v2k) can be written as a prod-
uct of two (j + k + 1)-cycles

(u1 u2 . . . uj v1 v2 . . . vk+1)(u1 vk+2 vk+3 . . . v2k v1 uj+1 uj+2 . . . u2j).

Note that the latter construction works even in the smallest cases where either cycle is
a transposition. The first and second terms of each product combine to form permuta-
tions A and B, respectively.

In each nontrivial cycle, each symbol is moved by exactly one of A or B, except the
“first” symbol (i.e., t1, u1, v1 in our earlier notation), which is moved by both. Thus,
the combined number of moved symbols is | supp(A)|+ | supp(B)| = m+ c, where
m = | supp(P )| and c is the number of nontrivial cycles. Since A and B are of the
same cycle type, they must each move exactly `0 = (m+ c)/2 symbols.

To string all of the cycles together, we use the fact that each pair of cycles that were
used to form A and B overlap at some symbol. Consider cycles of the form (p . . . )
and (q . . . ) in both A and B. Multiplying by the transposition T = (p q) merges
those two cycles of both A and B, as seen in Figure 9(b). The compositions AT and
TB have the same supports as A and B, respectively. The two new cycles still overlap
at symbols p and q, so this process can be repeated until all cycles are merged into one
long cycle. Since the supports stayed the same throughout this procedure, we conclude
that the final permutations are overlapping `0-cycles.
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