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Abstract

A longstanding open question of Archdeacon and Craft asks whether every complete
graph has a minimum genus embedding with at most one nontriangular face. We
exhibit such an embedding for each complete graph except for K8, and we go on to
prove that no such embedding can exist for this graph. Our approach also solves a more
general problem, giving a complete characterization of the possible face distributions
(i.e. the numbers of faces of each length) realizable by minimum genus embeddings
of each complete graph. We also tackle analogous questions for nonorientable and
maximum genus embeddings.

1 Introduction

The celebrated Map Color Theorem of Ringel, Youngs, et al. [18] boils down to the fact that
for n ≥ 3, Kn, the complete graph on n vertices, can be embedded in a sphere with

I(n) =

⌈
(n− 3)(n− 4)

12

⌉
handles. Equivalently, Kn can be embedded in the orientable surface of genus I(n). These
embeddings are provably minimal in terms of genus, as they match a lower bound given by the
Euler polyhedral equation. Starting with the work of Lawrencenko et al. [14], one direction
of continued research on this topic examines the number of nonoisormophic minimum genus
embeddings, and several different approaches (see, e.g., Bonnington et al. [2], Korzhik and
Voss [12], Goddyn et al. [5]) have yielded families of embeddings whose sizes are exponential
in the number of vertices.

The main combinatorial technique for finding minimum genus embeddings of complete
graphs are current graph constructions, where an embedding of a smaller, edge-labeled graph
can be used to generate a highly symmetric embedding of a much larger graph. The proof
generally proceeds in two steps:

• A regular step which involves finding a suitable current graph for triangularly embed-
ding a graph that is close to complete (e.g. an embedding of a complete graph minus
three edges).

• An additional adjacency step which modifies the embedded graph so it becomes com-
plete (e.g. using a handle to add the three missing edges).
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When n ≡ 0, 3, 4, 7 (mod 12), the embedding is a triangulation of the surface and no
additional adjacency step is necessary. For the other cases, Korzhik and Voss [13] exhibit
exponentially many embeddings by modifying the current graphs used in the regular step.
Their proof that the different embeddings are nonisomorphic involves showing that a bijective
mapping between the nontriangular faces cannot be extended to the whole embedding.

We exhibit new embeddings of complete graphs that are nonisomorphic for a more funda-
mental reason: the distributions of the face lengths are different. Archdeacon and Craft [1]
ask whether or not every complete graph has a minimum genus embedding that is nearly tri-
angular, one where at most one face is nontriangular. We show that K8 is the only complete
graph without such embedding. In the process, we have found simpler families of current
graphs for n ≡ 1, 8 (mod 12). We note that for most of the complete graphs, the original
constructions did not produce nearly triangular embeddings (see the exposition in Korzhik
and Voss [13]).

One can also ask if there are minimum genus embeddings which manifest all other pos-
sible combinations of nontriangular faces (e.g. two quadrangular faces), as permitted by
the Euler polyhedral equation. Besides the aforementioned K8, it turns out that the only
other complete graph which does not realize all its predicted embedding types is K5. The
results in this paper can been seen as a step in understanding the embedding polynomials
(as introduced by Gross and Furst [7]) of the complete graphs—we fully determine which
coefficients corresponding to minimum genus embeddings are nonzero.

In Sections 2 and 3, we review some background on topological graph theory and current
graphs. We prove the main result in Section 5, where the different cases are handled in
roughly increasing difficulty of the additional adjacency problem. Some variations of the
original problem are solved in Sections 6 and 7, and some potential future directions are
outlined in Section 8.

2 Background on graph embeddings

We assume familiarity with topological graph theory, especially topics covered in Gross and
Tucker [8]. A complete proof of the Map Color Theorem can be found in Ringel [17].

An embedding of a graph G in a surface S is an injective map φ : G → S. We restrict
our attention to cellular embeddings, those where S \φ(G) decomposes into a disjoint union
of open disks called faces, denoted by F (G, φ). With the exception of Sections 6 and 7, we
consider only embeddings in orientable surfaces. A k-sided face can be described by a cyclic
sequence [v1, v2, . . . , vk] of the vertices that appear along the boundary of the face. We some-
times call a 3-sided face a triangle, a 4-sided face a quadrilateral, and so on. When dealing
with embeddings in orientable surfaces, we choose an orientation and apply it consistently
to all the faces and the descriptions of their boundaries. As a result, a face described by the
cyclic sequence [a, b, c] cannot be described by the reverse sequence [a, c, b].

Let V (G) and E(G) denote the vertex and edge sets of G, respectively, and let Sg denote
the surface of genus g, i.e., a sphere with g handles. The fundamental relation governing
cellular embeddings is the Euler polyhedral equation, which states that for an embedding
φ : G→ Sg, we have

|V (G)| − |E(G)|+ |F (G, φ)| = 2− 2g.
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The minimum genus γ(G) of a graph G is the smallest value g such that G has an embedding
in Sg. By the Euler polyhedral equation, such an embedding has the most faces out of any
embedding of G.

An embedding of a graph is said to be triangular if all its faces are triangular, and nearly
triangular if at most one face is not triangular. For a simple graph on three or more vertices,
a triangular embedding maximizes the number of faces, so it is impossible for there to be an
embedding in a surface of smaller genus. The starting point of the Map Color Theorem and
many other graph embedding problems is the following refinement of the Euler polyhedral
equation:

Proposition 2.1. If a graph G has a triangular embedding in Sg, then number of edges in
G is

|E(G)| = 3|V (G)| − 6 + 6g.

From this relationship, we can figure out what types of minimum genus embeddings are
permissible under the Euler polyhedral equation. Some complete graphs, K7 for example, do
have a triangular embedding in some surface, but others do not. However, we can triangulate
the nontriangular faces with additional edges without increasing the genus. Substituting “Kn

plus t edges” into Proposition 2.1 yields

6n+ 12g − 12 = 2(|E(Kn)|+ t) = n(n− 1) + 2t.

To remove the genus parameter g, we take the resulting equation modulo 12:

2t ≡ −(n− 3)(n− 4) (mod 12).

Like in the Map Color Theorem, the analysis now breaks down into twelve Cases (with a
capital “C”) depending on the residue n mod 12. Define t(n) to be the smallest nonnegative
integer t satisfying the above congruence. Initially, we observe the following:

• If n ≡ 0, 3, 4, 7 (mod 12), t(n) = 0.

• If n ≡ 2, 5 (mod 12), t(n) = 5.

• If n ≡ 1, 6, 9, 10 (mod 12), t(n) = 3.

• If n ≡ 8, 11 (mod 12), t(n) = 2.

One way of rephrasing the genus formula for the complete graphs is to say that there
exist triangular embeddings of “Kn plus t(n) edges” for all n ≥ 3. The Euler polyhedral
formula guarantees that such an embedding is necessarily of minimum genus.

The face distribution (or region distribution [22]) of an embedding is the sequence f1, f2, . . .
where fi is the number of faces of length i. For example, a minimum genus embedding of
K7 triangulates the torus, so its face distribution is

0, 0, 14, 0, 0, . . .
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The primary goal of the present paper is to classify the different possible face distribu-
tions for minimum orientable genus embeddings of complete graphs. For the residue classes
n 6≡ 0, 3, 4, 7 (mod 12), we can enumerate all possible face distributions permitted by the
Euler polyhedral equation by partitioning the t(n) “chordal” edges into different faces. For
example, for n = 14, we have t(14) = 5. As seen in Figure 1, distributing all five additional
edges into the same face gives us an 8-sided face, but we could distribute the edges in a
different way to get one 6-sided face and one 5-sided face.

Figure 1: The missing chords could be partitioned among faces in a few different ways.

Instead of writing out face distributions in full and counting all the triangular faces, we
say that an embedding is of type (a1, . . . , ai), if it has faces of length a1, a2, . . . , ai, where
a1 ≥ a2 ≥ · · · ≥ ai > 3, and all the other faces are triangular. In this terminology, K14 could
have embeddings of type (8) and (6, 5). In general, if t(n) = b1 + · · ·+bj is a partition of t(n)
into positive integers bi, we are looking for an embedding of type (b1 + 3, b2 + 3, . . . , bj + 3).
Thus, we need to find the following:

• For n ≡ 2, 5 (mod 12), types (8), (7, 4), (6, 5), (6, 4, 4), (5, 5, 4), (5, 4, 4, 4), and

(4, 4, 4, 4, 4).

• For n ≡ 1, 6, 9, 10 (mod 12), types (6), (5, 4), (4, 4, 4).

• For n ≡ 8, 11 (mod 12), types (5) and (4, 4).

Our main result states that all these predicted embedding types exist, except for two
complete graph:

Theorem 2.2. For all n ≥ 3, n 6= 5, 8, and for every partition

t(n) = b1 + b2 + · · ·+ bj,

of t(n) into positive integers b1 ≥ b2 ≥ · · · ≥ bj, there exists an embedding of type

(b1 + 3, b2 + 3, . . . , bj + 3)

of the complete graph Kn. The graph K5 has minimum genus embeddings only of type (8),
(7, 4), (6, 4, 4), (5, 5, 4), and (4, 4, 4, 4, 4), and K8 has minimum genus embeddings only of
type (4, 4).

A special case of this result answers the original question of Archdeacon and Craft [1],
showing that:
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Corollary 2.3. For n ≥ 3, n 6= 8, there exists a nearly triangular minimum genus embedding
of Kn.

We first describe the exceptional cases to Theorem 2.2, namely n = 5, 8. A direct
enumeration over all rotation systems of K5 reveals that some predicted embedding types in
the torus do not exist:

Proposition 2.4 (see Gagarin et al. [4] or White [22, p.270]). K5 has embeddings of type
(8), (7, 4), (6, 4, 4), (5, 5, 4), and (4, 4, 4, 4, 4), but no embeddings of type (6, 5) or (5, 4, 4, 4).

For n = 8, the nearly triangular case is ruled out by another nonexistence result for tri-
angular embeddings, which was also verified indepedently through exhaustive search. Thus,
any minimum genus embedding of K8 must have type (4, 4). To prove this we need a straight-
forward fact about 5-sided and 6-sided faces. We say a face is simple if it is not incident
with the same vertex more than once.

Lemma 2.5. Let G be a simple graph with minimum degree 2. For any orientable embedding
of G, all 5-sided faces are simple. A 6-sided face can have at most one repeated vertex—
in particular, if there is a repeated vertex x, the face is of the form [a, b, x, c, d, x], where
a, b, c, d, x are all distinct.

Proof. Suppose some vertex v appears twice in some 5-sided face. The face cannot be of the
form [. . . v, v . . . ], otherwise there would be a self-loop at v. On the other hand, the face also
cannot be of the form [. . . v, w, v . . . ] for some vertex w, because otherwise w would have
degree 1, or there would be more than one edge incident with both v and w.

By the same reasoning, if a vertex x appears twice on the boundary of a 6-sided face, those
two instances must appear “opposite” each other, i.e., the face is of the form [a, b, x, c, d, x].
Suppose two vertices a and b each appear twice on the same face. Without loss of generality,
the face must be of the form [a, b, c, a, b, d]. However, since the edge (a, b) is traversed twice
in the same direction, this would imply that the embedding is in a nonorientable surface.

Proposition 2.6. K8 does not have a nearly triangular minimum genus embedding.

Proof. If such an embedding existed, it would be in the surface S2 and have a simple 5-sided
face by Lemma 2.5 and the fact that t(8) = 5. By subdividing the face with a new vertex,
we obtain a triangular embedding of the graph K9−K1,3 in S2. However, Huneke [9] showed
that no such embedding exists.

For the Cases where t(n) = 2 or 3, it turns out that practically all of the difficulty
is in finding the nearly triangular embedding, i.e. the embeddings of types (5) and (6),
respectively. Using those embeddings, it is straightforward to obtain the other types.

Proposition 2.7. If Kn has an orientable embedding of type (5) (resp. type (6)), then it
has an embedding of type (4, 4)) (resp. types (5, 4) and (4, 4, 4)).

Proof. In the embedding of type (5), the 5-sided face f is simple by Lemma 2.5, so if f is of
the form [. . . a, b, c . . . ], a must be different from c, and the edge (a, c) is not incident with
this face. If we delete the edge (a, c) and add it back in as a chord of f , we get an embedding
of type (4, 4).
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Applying Lemma 2.5 again, suppose the 6-sided face in an embedding of type (6) is of
the form [a, v, w, a′, x, y], where a and a′ are possibly the same vertex. Like in the previous
case, we alter the positions of edges (v, w) and (x, y) so that they become chords. Figure 2
illustrates this procedure, where the dashed and thickened lines represent the old and new
locations of the edges, respectively. The result is an embedding of type (4, 4, 4). Applying
this procedure to just one of the edges yields an embedding of type (5, 4).

x

y
a

v

w

a′

y

v

w

x

Figure 2: Changing an embedding of type (6) into one of type (4, 4, 4).

Changing the location of an existing edge to a nontriangular face is prevalent in this
paper. We call such an operation a chord exchange or say that we are exchanging the chord
(u, v). When multiple chords need to be exchanged in a specific order, we express the
sequence of chord exchanges as

(u1, v1)→ (u2, v2)→ · · · → (ui, vi).

3 Rotation systems and current graphs

Let G be a graph, possibly with parallel edges or self-loops. If we give an arbitrary orientation
to each of the edges in E(G), then associated with each edge e are two arcs e+ and e− that
are in opposite directions. We denote the set of such arcs by E(G)+. A rotation at vertex
v ∈ V (G) is a cyclic permutation of the arcs in E(G)+ leaving v. A rotation system Φ of
G is an assignment of a rotation to each vertex of G. In the case of a simple graph, we
only need to specify a cyclic ordering of the neighbors of v, thus rotation systems of simple
graphs are often written as a table of vertices, where each row corresponds to a rotation at
some vertex. For an embedding in an oriented surface, we can obtain a rotation system by
considering the clockwise order of edges incident with each vertex, and a rotation system
can be converted into a cellular embedding via the face-tracing algorithm.

Our main tools for constructing triangular embeddings of large dense graphs are known as
current graphs. We describe them slightly informally here—a rigorous topological treatment
can be found in Gross and Tucker [8]. For the purposes of this paper, a current graph
(G, φ, α) consists of a graph G, an embedding φ : G → S in an orientable surface, and an
arc-labeling α : E(G)+ → Zn with elements from a cyclic group Zn such that for all pairs
of opposing arcs e+ and e−, α(e+) = −α(e−). The group Zn is referred to as the current
group and the arc labels are referred to as currents. Except for two current graphs described
in Appendix A, we only consider index 1 current graphs, ones where there is one face in
the embedding φ. The boundary of this face is called the circuit, and it consists of a cyclic
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sequence of arcs (a1, a2, . . . , ai). The log of a circuit (α(a1), α(a2), . . . , α(ai)) replaces each
of the arcs with their associated currents.

An example of a current graph is given in Figure 3, where solid and hollow vertices
indicate clockwise and counterclockwise rotations, respectively. Let the excess of a vertex
v be the sum of the currents on the arcs entering v. All the vertices of degree 3 have zero
excess, which we refer to as satisfying Kirchhoff’s current law (KCL), while all the vertices
of degree 1 have nonzero excess.

We take note of the different excesses on the vertices of degree one: the one on the right
of Figure 3 produces two consecutive instances of the order 2 element of Z18 in the log of the
circuit. This repetition indicates a doubled perfect matching in the final embedding, which
can be eliminated by removing one instance of that element from the log. We follow the
convention of omitting the degree 1 vertex as a reminder of this convention. The other two
vertices of degree 1 are labeled with letters and represent one of each of the following types
of vortices :

(T1) A vertex of degree 1 whose excess generates the entire current group.

(T2) A vertex of degree 1 whose excess generates the index 2 subgroup of the current group.

y

x
1 7

8 2

6 3

4

5

9

Z18

Figure 3: A current graph and its circuit.

That is, the vertices labeled x and y are vortices of type (T1) and (T2), respectively. These
letters mark the presence of large nontriangular faces, and we augment the log of the circuit
by adding those letters as we encounter them. The final log of the circuit is thus:

17 x 1 12 2 15 4 13 16 10 y 8 6 7 3 5 9 14 11.

To construct the derived embedding of this current graph, we first ignore the letters in
the log, and for each element k ∈ Z18 of the current group, we add k to each numbered
element of the log to obtain the rotation at vertex k. The degree 3 vertices induce triangular
faces due to KCL, and as mentioned earlier, the vortices of type (T1) and (T2) induce large
nontriangular faces. If a vortex of type (T1) has excess γ, the face is a Hamiltonian cycle of
the form

[0,−γ,−2γ,−3γ, . . . , 3γ, 2γ, γ],
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and if a vortex of type (T2) has excess δ, there are two faces, each incident with half of the
numbered vertices, of the form

[0,−δ,−2δ, . . . , 2δ, δ] and [1, 1−δ, 1−2δ, . . . , 1+2δ, 1+δ].

After constructing this derived embedding, we subdivide each of these faces with a vertex
and connect that vertex to all the vertices along the face. In our embedding, we have γ = −1
and δ = −8 for the vortices labeled x and y, respectively, so we add new vertices x, y0, and
y1 whose induced rotations are

x. 0 17 16 . . . 2 1
y0. 0 10 2 . . . 16 8
y1. 1 11 3 . . . 17 9

.

Subsequently, the rotations at the 18 numbered vertices become

0. 17 x 1 12 2 15 4 13 16 10 y0 8 6 7 3 5 9 14 11
1. 0 x 2 13 3 16 5 14 17 11 y1 9 7 8 4 6 10 15 12
2. 1 x 3 14 4 17 6 15 0 12 y0 10 8 9 5 7 11 16 13
...

16. 15 x 17 10 0 13 2 11 14 8 y0 6 4 5 1 3 7 12 9
17. 16 x 0 11 1 14 3 12 15 9 y1 7 5 6 2 4 8 13 10

One can check that the entire embedding is triangular, and that all the numbered vertices
are adjacent to one another. The current graph in Figure 3, and all others considered in this
paper, satisfy the following “construction principles”:

(C1) Each vertex of G has degree 3 or 1.

(C2) Each nonzero element of the current group Zn appears in the log of the circuit exactly
once.

(C3) φ is a one-face embedding, i.e., the current graph is of index 1.

(C4) For each vertex of degree 3, KCL is satisfied.

(C5) If the current group has even order, then the order 2 element must be assigned to an
arc incident with a vertex of degree 1.

(C6) Each vortex is of type (T1) or (T2).

The familes of current graphs we will encounter contain ladder-like subgraphs, like on
the left of Figure 4. The additional adjacency steps use only a small part of a current graph,
so we simplify our drawings by using labeled boxes to designate ladder-like subgraphs.
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· · ·

m

⇒ m

Figure 4: For brevity, ladders are replaced with boxes indicating the number of “rungs.”

4 Connecting three vertices with a handle

We make use of the following operation on the rotation at a vertex, which is a variation of
Ringel’s construction (e.g., Figure 5.2 in [17]) for merging three faces incident with the same
vertex:

Modification 4.1. Let φ be a triangular embedding, and let v be a vertex with neighbors
x, y, z. Suppose the rotation at v in φ is of the form

v. x a1 . . . ai y b1 . . . bj z c1 . . . ck.

Delete the edges (v, x), (v, y), and (v, z), and rewrite the rotation at v as

v. a1 . . . ai c1 . . . ck b1 . . . bj.

Applying Modification 4.1 on a triangular embedding of genus g yields an embedding of
genus g + 1 with the 12-sided face

[a1, x, ck, v, b1, y, ai, v, c1, z, bj, v],

as illustrated in Figure 5. In particular, the number of edges and faces decreased by 3 and
5, respectively.

v

x

z

y

ai

a1

bj

b1

ck

c1

···

···

· · ·

⇒
v

x

z

y

ai

a1

bj

b1

ck

c1

···

···

· · ·

Figure 5: Altering the rotation at a vertex to increment the genus.

Inside of this 12-sided face, we try to add back the deleted edges and also add some new
edges. The most immediate application of this construction simply connects x, y, and z:
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Proposition 4.2. If there exists a triangular embedding φ of Kn −K3 then there exists an
embedding of Kn in the surface of genus I(n).

Proof. One can check that the genus of φ is I(n) − 1. After applying Modification 4.1 and
adding the chords (x, y), (y, z), and (x, z), we are left with the 5-sided faces [0, b1, y, x, ck],
[0, c1, z, y, ai], and [0, a1, x, z, bj], as in Figure 6. There are several options for adding back
the edges (0, x), (0, y), and (0, z) as chords.

0

ck

b1

0
ai

c1

0

bj

a1

z

x

y

Figure 6: Adding in a K3 with a handle with one possible way of restoring the deleted edges.

We note that this method alone cannot produce an embedding of type (6), for any choice
of placements of the edges (0, x), (0, y), (0, z). Thus, our families of current graphs need to
satisfy additional properties so that the right sequence of chord exchanges can be applied to
produce the desired 6-sided face.

5 Orientable minimum genus embeddings

5.1 Cases 2 and 5

Theorem 5.1. For all s ≥ 1, the graphs K12s+2 and K12s+5 have embeddings of type (8),
(7, 4), (6, 5), (6, 4, 4), (5, 5, 4), (5, 4, 4, 4), and (4, 4, 4, 4, 4).

Proof. There exist triangular embeddings of Kn −K2 for n ≡ 2, 5 (see Jungerman [10] and
§9 of [17]). To add the missing edge, we excise a disk from two triangular faces and attach
a handle between the resulting boundaries. Adding the missing edge along this handle,
following Figure 7, creates an embedding of type (8). For n ≥ 14, we apply chord exchanges
to construct all the remaining embedding types:

(Types (7, 4), (6, 4, 4), (5, 5, 4), and (4, 4, 4, 4, 4)). Since s ≥ 1, both x and y have enough
neighbors to allow us to find faces [x, a, b] and [y, c, d] such that a, b, c, d are all distinct
vertices. After merging these two faces with a handle and adding the edge (x, y), the resulting
8-sided face is of the form [x, a, b, x, y, c, d, y]. Exchanging the following sets of chords yields
the following embeddings:

type (7, 4): (a, y); type (6, 4, 4): (a, d);
type (5, 5, 4): (a, c); type (5, 4, 4, 4): (a, d)→ (b, y);

type (4, 4, 4, 4, 4): (a, d), (b, c).
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yx⇒yx

Figure 7: Adding an edge using a handle merges two triangular faces into an 8-sided face.

Note that for the type (7, 4) case, only one of the two possible chord exchanges yields
the correct embedding type. The chord exchanges for type (5, 4, 4, 4) are illustrated in
Figure 8(a).

yx

c

d

b

a

da

by

(a)

yx

b

c

b

a

(b)

Figure 8: Finding embeddings of types (5, 4, 4, 4) (a) and (6, 5) (b).

(Type (6, 5)). We assert that there exist faces [x, a, b], [y, b, c], where a 6= c. Vertex b has
at least 13 neighbors, so without loss of generality, we may assume that the rotation at b is
of the form

b. . . . y c . . . a x . . . ,

i.e., that there are at least two other vertices in between y and x in the cyclic sequence.
Hence, these triangles incident with b are the desired faces. If we delete the edge (a, b)
and insert a handle between the resulting quadrilateral face and [y, b, c], we can add the
edges (x, y) and (a, b) in such a way that leaves one 6-sided and one 5-sided face, as in
Figure 8(b).

5.2 Case 9

We say that Gn is a split-complete graph if we can label its vertices 1, 2, . . . , n−1, x0, x1 such
that

• 1, . . . , n− 1 are all pairwise adjacent, and

• the neighbors of x0 and the neighbors of x1 form a partition of {1, . . . , n− 1}.

Proposition 5.2. If there exists a triangular embedding of a split-complete graph Gn, then
there exists an embedding of type (6) of Kn.
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Proof. Add the missing edge x0 and x1 as we did for Cases 2 and 5. Note that the newly
added edge (x0, x1) appears twice in the resulting 8-sided face. Locally contracting this edge
leaves a 6-sided face, as in Figure 9.

x1x0 ⇒ x

Figure 9: Attaching a handle to add an edge, and then contracting the edge to form a 6-sided
face.

In §6.5 of Ringel [17], a triangular embedding of a split-complete graph G12s+9 is con-
structed for all s ≥ 0, yielding the following:

Theorem 5.3. For all s ≥ 0, the graph K12s+9 has a nearly triangular minimum genus
embedding.

Corollary 5.4. For all s ≥ 0, the graph K12s+9 has embeddings of type (6), (5, 4), and
(4, 4, 4) of K12s+9.

5.3 Case 6

Our approach for much of Case 6 is via triangular embeddings of Kn − P3, where P3 is the
path graph on three edges:

Lemma 5.5. If there exists a triangular embedding of Kn−P3, then there exists an embedding
of type (6) of Kn.

Proof. Suppose the missing edges are (a, b), (b, c), and (c, d). The edges (a, c) and (b, d) are
in the graph, so there are triangular faces [a, c, x] and [d, b, x′] for some possibly nondistinct
vertices x and x′. Note that exactly one pair of faces incident with (a, c) and (b, d) have
those specific orientations. With one handle, we can add back the missing edges following
Figure 10, leaving the 6-sided face [a, b, x′, d, c, x].

Theorem 5.6. For all s ≥ 0, the graph K12s+6 has a nearly triangular minimum genus
embedding.

Proof. For s = 0, such an embedding can be found by deleting a vertex from the triangular
embedding of K7 in the torus. For s = 1, Mayer [15] constructed a split-complete graph G18,
so applying Proposition 5.2 yields the desired embedding.

Gross [6] found triangular embeddings of K12s+6 − P3 for s ≥ 3. For the remaining case
s = 2, we obtain such an embedding from the triangular embedding of K30 − K3 given in
§9.3 of Ringel [17] (and detailed in Appendix A) by deleting the edge (6, x), exchanging the
sequence of chords (11, 16) → (1, 26), and adding the edge (x, z). By applying Lemma 5.5
to each of these graphs, we obtain nearly triangular embeddings of K12s+6, s ≥ 2.
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c

a
x x′

d

b

Figure 10: Adding a P3 subgraph using a specific pair of faces to get a 6-sided face.

Corollary 5.7. For all s ≥ 0, the graph K12s+6 has embeddings of type (6), (5, 4), and
(4, 4, 4).

5.4 Case 10

Theorem 5.8. For all s ≥ 0, the graph K12s+10 has a nearly triangular minimum genus
embedding.

Proof. For s = 0, we apply Lemma 5.5 to the triangular embedding of K10 − P3 given in
Appendix A.

We use the same current graph as Ringel [17, §2.3], except we reverse the rotation at the
vertex adjacent to vortex z, as shown in Figure 11. Our solution to the additional adjacency
problem hinges on the fact that the current 2s+1 flowing into vortex x is twice that of
−(5s+3), the current flowing into vortex z. Let c = −(5s+3) = 7s+4. Then 2s+1 = 2c and
3s+2 = −3c in the group Z12s+7.

2s+2

x
2s+1

y

z
5s+3

3s+2

1 2s−1

Z12s+7

Figure 11: A current graph generating K12s+10 −K3 with the pertinent currents marked.

After expressing the currents in Figure 11 in terms of the value c, the log of this current
graph is of the form

−3c y 3c 1 c z −c . . . −2c−1 2c x −2c . . .

After applying Modification 4.1 to vertices 0 and x, y, z, we obtain the 12-sided face

[x, 2c, 0, 3c, y,−3c, 0,−c, z, c, 0,−2c].

We exchange the chords (x, c) and (x, 3c), in addition to the sequence

(2c, 3c)→ (2c+1, z)→ (c+1, 3c+1)→ (−c, x),

13



and add back the edges (0, x), (0, y), and (0, z) according to Figure 12. The chord exchanges
produce a 6-sided face by deleting three consecutive edges in the rotation at vertex x.

Corollary 5.9. For all s ≥ 0, the graph K12s+10 has embeddings of type (6), (5, 4), and
(4, 4, 4).

0

2c

3c

0−3c

−c

0

c

−2c

z

x

y

x

5c
3c c −c

−3c

2c

3c

z2c+1

2c+1

z

c+13c+1

c+1

3c+1

x−c

Figure 12: Obtaining a 6-sided face using chord exchanges.

5.5 Case 1

Theorem 5.10. For all s ≥ 1, the graph K12s+1 has a nearly triangular minimum genus
embedding.

Proof. The minimum genus embedding of K13 given by Ringel [17, p.82] already happens to
be nearly triangular.

For s = 2, we use the current graph in Figure 13, which is isomorphic to one presented in
Ringel [17, §6.3], and for s ≥ 3, we use the family of current graphs in Figure 14. To interpret
this drawing, replace the box in Figure 14(a) with the graph fragment in Figure 14(b). The
elements 1, 3, and 6s−3 are all generators of Z12s−2, so the vortices are all of type (T1) and
the derived embeddings are triangular embeddings of K12s+1 −K3.

z

x

y

2 6

4

3

1

9 5

7

11
8 10

Z22

Figure 13: Gustin’s current graph relabeled.
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6s−4

6s−6

y

x

z

3s−4

3s−1

6s−3

1

6s−1
6s−2

3

3s+1

3s−2

3s−7

3s+4

6s−7 6

4

Z12s−2

2s−5

(a)

6s−10 2 6s−7

7 6s−5 4

6s−12 6s−9

3s−7 3s+2 3s−10

3s+4 3s−5 3s+7

9 12

· · ·

· · ·

(b)

Figure 14: Current graphs for Case 1, s ≥ 3.

For all these current graphs, the relative positions of the letters x, y, and z in the rotation
at vertex 0 are the same, so applying Modification 4.1 on vertex 0 and vertices x, y, z produces
the 12-sided face

[z, 6s−3, 0,−3, y, 3, 0, 1, x,−1, 0, 6s+1].

The sequences of chord exchanges

(x, 3)→ (2, 4)→ (5, 18)→ (z, 13)

for s = 2 and
(y, 6s−3)→ (6s−6, 6s)→ (0, 1)

for s ≥ 3 removes one of the edges incident with the 12-sided face. If we add the remaining
edges according to Figure 15, we obtain nearly triangular embeddings with one 6-sided face.

Corollary 5.11. For all s ≥ 1, the graph K12s+1 has embeddings of type (6), (5, 4), and
(4, 4, 4).

Remark. To the best of our knowledge, all previously published families of current graphs
for orientable triangular embeddings of K12s+1−K3 split into two subfamilies depending on
the parity of s. Our current graphs in Figure 14 form a solution for all s ≥ 3 irrespective of
parity. Another such family of current graphs is presented in Appendix B that includes the
s = 2 case, but we were unable to use it to prove Theorem 5.10.
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Figure 15: The end result of the Case 1 additional adjacency for s = 2 (a) and s ≥ 3 (b).

5.6 Case 8

Theorem 5.12. For all s ≥ 1, the graph K12s+8 has a nearly triangular minimum genus
embedding.

Proof. We use a variety of current graphs with current group Z12s+6: for s = 1, the index
3 current graph described in Appendix A, for s = 2, the current graph of Ringel and
Youngs [20] in Figure 16, and for s ≥ 3, the new family of current graphs in Figure 17.

In all their derived embeddings, there is vertex x incident with only the numbered ver-
tices, and two vertices y0 and y1 incident with only the even and odd numbered vertices,
respectively. With one handle, we wish to connect the vertices x, y0, and y1 to produce a
nearly triangular embedding. If we delete the edge (6s−1, x), we can exchange the sequence
of chords (6s, 6s−2) → (0, 6s+4) so that the edge (12s+1, y0) can be added. Now, vertex
12s+1 is incident with all the lettered vertices, as in Figure 18(a).

y

x
1 10 2 4

7

14 5 13 11

8

15
9 12 6 3

Z30

Figure 16: The current graph of Ringel and Youngs [20] for K32.

If we apply Modification 4.1 to vertex 12s+1 and neighbors y0, y1, x, we obtain the 12-
sided face

[y0, 6s+4, 12s+1, 6s−3, y1, 6s−1, 12s+1, 12s+2, x, 12s, 12s+1, 0].

Adding the edge (y0, y1) in this face and contracting it to make a new vertex y yields one
4-sided face and one 8-sided face, and the remaining edges (x, y), (y, 12s+1), (x, 12s+1),
and (x, 6s−1) can be added back in, according to Figure 18(b), to produce an embedding of
type (5).
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6s−12 6s−15
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Figure 17: A new family of current graphs for s ≥ 3.

0

y06s+4

12s+2

x

12s

6s−3
y1

6s−1

12s+1 ··
·

···

· · ·

(a)

6s+4

12s+1

6s−3

0

12s+1

12s

x

12s+2

12s+1

6s−1

y1

y0

(b)

Figure 18: An initial modification near vertex 12s+1 (a) and using one handle to connect
all lettered vertices and to replace the missing edge (x, 6s−1) (b).

Corollary 5.13. For all s ≥ 1, the graph K12s+8 has embeddings of type (5) and (4, 4).

Remark. The additional adjacency solution presented here can also be applied to the family
of current graphs of Ringel and Youngs [20] for s ≥ 4. Our family of current graphs, while
slightly more complicated in terms of the underlying graph, benefits from a significantly
simpler current assignment. In addition, our solution handles the odd and even s cases
simultaneously, and it extends downwards to s = 3, for which Ringel and Youngs needed a
special embedding that cannot be easily modified into a nearly triangular embedding.
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5.7 Case 11

Theorem 5.14. For all s ≥ 0, the graph K12s+11 has a nearly triangular minimum genus
embedding.

Proof. Ringel [17, §5.2] describes the minimum genus embeddings ofK11 andK23 of Mayer [15]
with doubled edges deleted and each nontriangular face subdivided with a new vertex. Delet-
ing the subdivision vertices in both embeddings leaves two quadrilateral faces. We obtain
nearly triangular embeddings each with one 5-sided face by exchanging the chords (1, 8) and
(11, 8) in the embedding of K11 and exchanging the sequences of chords

(10, 16)→ (6, 20) and (8, 22)→ (9, 14)→ (5, 6)

in the embedding of K23.
For the general case s ≥ 2, tracing through the construction of Ringel and Youngs [19]

in primal form, as done in Theorem 8 of Korzhik and Voss [13], yields a minimum genus
embedding of K12s+11 with two quadrilateral faces [0, 6s+5, x, y] and [0, a, b, 4] and the tri-
angular face [0, b, x] (see Figure 14 of [13]). Exchanging the chords (0, x) and (0, b) yields a
nearly triangular embedding.

Corollary 5.15. For all s ≥ 0, the graph K12s+11 has embeddings of type (5) and (4, 4).

6 Nonorientable embeddings

Let Nk denote the nonorientable surface of genus k, a sphere with k crosscaps, and let γ(G)
be the minimum nonorientable genus of G. Analogously, for a nonorientable embedding
φ : G→ Nk, we have the nonorientable Euler polyhedral equation

|V (G)| − |E(G)|+ |F (G, φ)| = 2− k
and the nonorientable genus formula for the complete graphs:

γ(Kn) =

⌈
(n− 3)(n− 4)

6

⌉
, n ≥ 3, n 6= 7.

The discrepancies with the orientable versions are due to the fact that one handle in a
nonorientable surface is homeomorphic to two crosscaps. The lone exception n = 7 is due
to Franklin [3], who showed that K7 cannot embed in N2, the Klein bottle.

Because crosscaps are “half of a handle,” we can obtain nonorientable triangular em-
beddings for some complete graphs that cannot triangulate an orientable surface. For
n ≡ 1, 6, 9, 10 (mod 12), we showed that there were orientable embeddings of type (6) of
Kn, but these graphs actually have nonorientable triangular embeddings (see Ringel [17]).
Similarly, we used a handle to add the missing edge to a triangular embedding of Kn−K2 for
n ≡ 2, 5 (mod 12), but actually a crosscap suffices. We show, using only known construc-
tions, that all the predicted embedding types for minimum nonorientable genus embeddings
exist:
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Figure 19: Adding one edge with a crosscap.
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Figure 20: Some simple modifications to the triangular embedding of K7.

Theorem 6.1. For n ≡ 2, 5, 8, 11 (mod 12), n ≥ 5, the complete graph Kn has embeddings
of types (5) and (4, 4) in nonorientable surfaces. K7 has minimum genus embeddings of types
(6), (5, 4), and (4, 4) in N3.

Proof. Like in the orientable case, it suffices to find the nearly triangular embedding. That
is, a nonorientable analogue of Proposition 2.7 also holds for embeddings of type (5). Ko-
rzhik [11] shows that the standard proof of Case 8 of the nonorientable Map Color Theorem
(see also Ringel [17, §8.3]) yields an embedding of type (5) of K12s+8, s ≥ 0. For the remain-
ing Cases, there are several known ways [10, 11, 17] of constructing triangular embeddings of
Kn−K2, n ≡ 2, 5, 11 in possibly nonorientable surfaces. The interpretation by Korzhik [11]
of the standard construction for adding an edge with one crosscap results in an embedding
of type (4, 4), but a small modification produces a nearly triangular embedding:

Let x and y be the two nonadjacent vertices of Kn − K2, and let 0 be another vertex
adjacent to both x and y. As seen in Figure 19, by deleting the edges (0, x) and (0, y) and
passing some of the other edges incident with vertex 0 through a crosscap, we obtain an
8-sided face incident with x, y, and 0. After adding the chord (x, y), there is a choice for
adding back the removed edges (0, x) and (0, y) that yields an embedding of type (5).

The exceptional graph K7 has a triangular embedding in S1, but not in N2. Let a be any
vertex in this toroidal embedding and suppose its rotation is of the form

a. . . . b c d e . . .

Then, as in Figure 20, we can add a crosscap along the edge (a, c) to obtain a cellular embed-
ding of type (6) in N3. Unlike in Proposition 2.7, where we explicitly invoked orientability,
the resulting hexagonal face [c, a, b, c, a, d] has two pairs of repeated vertices. However, the
chord exchange on the right of Figure 20 removes one of those repetitions, allowing us to use
additional chord exchanges to obtain the embeddings of type (5, 4) and (4, 4, 4).
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7 Maximum genus embeddings

The (orientable) maximum genus γM(G) is the largest integer g such that G has a cellular
embedding in Sg. Archdeacon and Craft [1] also ask if the complete graphs have nearly
triangular maximum genus embeddings. The complete graphs Kn are known to be upper-
embeddable (see Nordhaus et al. [16]), meaning they have embeddings with either one or
two faces, depending on the parity of |E(Kn)| − |V (Kn)|. One-face embeddings are already
trivially nearly triangular, so we need a construction just for two-face embeddings.

A special case of Xuong’s characterization [23] of maximum genus states that a graph G
is upper-embeddable if and only if there is a spanning tree T such that G − T has at most
one component with an odd number of edges. To construct a one- or two-face embedding,
the edges of G−T are partitioned into pairs such that the edges of each pair share a vertex.
Starting with an arbitrary embedding of the spanning tree T in the plane (which has one
face), we add the pairs one by one, as in Figure 21. After each addition, the resulting
embedding still has one face. If there is an edge left over (i.e. one of the edges of the
odd-sized component), it is added arbitrarily into the embedding, resulting in a two-face
embedding.

Figure 21: Adding two edges to a one-face embedding.

We note that the final embedding of G restricted to T is the same as the original em-
bedding of T that we started with. This observation is enough for constructing a nearly
triangular two-face embedding.

Proposition 7.1. For n ≡ 0, 3 (mod 4), there exists a two-face embedding of Kn where one
of the faces is a triangle.

Proof. Label the vertices 1, . . . , n. Delete the edge (2, 3) and let the spanning tree T be all
the edges incident with vertex 1. Then, the graph (Kn− (2, 3))−T is connected and has an
even number of edges. Let the rotation at vertex 1 in the embedding of T be

1. 2 3 . . . n−1 n.

Adding all pairs of edges in the manner described above preserves the rotation at vertex 1,
resulting in an embedding with one face of the form [. . . 2, 1, 3 . . . ]. We then insert the edge
(2, 3) into the embedding to obtain an embedding of Kn with one triangular face [2, 1, 3] and
one long nontriangular face.

Finally, the problem for the nonorientable maximum genus γM is the simplest of them
all. A well-known result (see, e.g., Stahl [21]) states that every connected graph with a cycle
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has a one-face embedding in a nonorientable surface, so there is nothing to prove. The main
idea behind its proof can be extended to the following “interpolation” theorem:

Proposition 7.2. For every nonorientable surface Nk, where

k ∈ [γ(Kn), γM(Kn)],

Kn has a nearly triangular embedding in Nk.

Proof. Let φ be a nearly triangular nonorientable minimum genus embedding of Kn. Let f
be the nontriangular face—if the embedding is triangular, let f be an arbitrary face. If φ is
not already a one-face embedding, then there exists an edge incident with f and a different
face. Adding a crosscap on this edge merges the two faces, incrementing the genus of the
embedding. Applying this procedure repeatedly, starting at a minimum genus embedding
and ending at a one-face embedding, yields the desired result.

8 Concluding Remarks

We resolved the question of Archdeacon and Craft [1], describing the complete graphs with
a nearly triangular minimum genus embedding. Interest in these types of embeddings orig-
inated in searching for nonisomorphic minimum genus embeddings of the complete graph.
While Korzhik and Voss [13] found exponential families of embeddings for the complete
graphs that do not triangulate a surface, their approach only looked at a single face distri-
bution per graph. Can the results presented here be used to construct exponential families
for the other face distributions?

The techniques of Korzhik and Voss [13] are extendable to Cases 1, 8, 9, 10, 11 by
modifying the rotations at the vertices hidden by the box in Figure 4. They also construct
exponential families of nearly triangular embeddings for Case 5, so the same construction
with chord exchanges should produce exponential families for the other face distributions.
The situation is uncertain for Cases 2 and 6—Korzhik and Voss had constructions for these
Cases, but they used different current graphs that have not been shown to yield nearly
triangular embeddings.

For Case 6, we found a solution using a result of Gross [6] for the related problem
of finding triangular embeddings of “nearly complete” graphs. Do other nearly complete
graphs belonging to the other Cases have similar results? Case 9 seems to be the most
accessible, since triangular embeddings of K12s+9 −K3 can be constructed in a similar way
(see Youngs [24]) as the embeddings of K12s+6 −K3 used by Gross.

In Cases 2, 5, and 9, we constructed nearly triangular embeddings where the nontriangular
faces are not simple. Can the constructions be modified in some way to produce nearly
triangular embeddings with simple faces? We suspect that this problem will be difficult for
the first two of those Cases.

The theory of index 3 current graphs allowed us to extend the additional adjacency
approach of Ringel and Youngs [20] to handle K20, which previously needed an asymmetric
embedding. Two interesting directions would be generalizing this solution to all of Case 8,
or using the same approach for Case 11.
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A Embeddings of small graphs

In this appendix, we describe triangular embeddings that were not produced using index 1
current graphs. The following embedding of K10 − P3 is used in the proof of Theorem 5.8:
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0. 2 6 5 7 4 3 8 9
1. 3 5 6 9 4 8 7
2. 0 9 7 5 8 4 6
3. 0 4 5 1 7 9 6 8
4. 0 7 6 2 8 1 9 5 3
5. 0 6 1 3 4 9 8 2 7
6. 0 2 4 7 8 3 9 1 5
7. 0 5 2 9 3 1 8 6 4
8. 0 3 6 7 1 4 2 5 9
9. 0 8 5 4 1 6 3 7 2

We describe two embeddings generated by index 3 current graphs. For more details,
see §9 of Ringel [17]. Instead of one log, there are now three, each corresponding to one
of the faces of the embedding. Rotations of numbered vertices are generated in a similar
manner, except that for vertex k ∈ Z3n, we add k to all the numbered elements in the log
labeled [k mod 3]. As with vortices in index 1 current graphs, lettered vertices signify long
nontriangular faces that have been subdivided with new vertices. The current graph depicted
in Figure 9.12 of Ringel [17] has the logs

[0]. 26 15 16 24 8 6 25 4 7 22 9 18 13 z . . .
14 1 12 11 3 19 21 2 23 20 5 x 10 y 17

[1]. 26 13 9 18 4 y 17 x 25 z 14 5 12 22 . . .
10 15 20 24 16 19 3 23 21 1 7 6 2 8 11

[2]. 1 18 9 10 y 23 14 13 z 2 x 22 15 5 . . .
17 12 7 3 11 8 24 4 6 26 20 21 25 19 16

with current group Z27. The rotation at, e.g., vertex x reads:

x. 0 5 7 24 2 4 21 26 1 18 23 25 15 . . .
20 22 12 17 19 9 14 16 6 11 13 3 8 10

For Case 8, s = 1, we made use of another index 3 current graph, depicted in Figure 22.
Its logs are

[0]. 5 3 14 11 15 2 7 12 16 4 6 13 10 y 8 9 17 x 1
[1]. 7 9 16 10 y 8 3 4 17 x 1 15 5 11 13 6 2 14 12
[2]. 13 14 17 x 1 10 y 8 6 9 15 4 7 3 12 2 11 5 16

B A new solution for Case 1

In Section 5.5, we found nearly triangular embeddings of K12s+1 for s ≥ 3 using a single
family of current graphs with a simple current assignment. In fact, there even exist families
of current graphs for K12s+1 − K3 that include the s = 2 case as well, such as the one in
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Figure 22: An index 3 current graph for Case 8, s = 1, where capital letters indicate
identifications.

Figure 23. This is the simplest known proof of Case 1 for s ≥ 2 of the original Map Color
Theorem, and as remarked by Ringel [17, p.96], there cannot exist an index 1 current graph
with three vortices of type (T1) for s = 1 because Z10 does not have enough generators.
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Figure 23: Current graphs producing triangular embeddings of K12s+1 −K3 for all s ≥ 2.

25


